Part Number Hot Search : 
BY8212 500ET 0M135 68110 BD436T GT5G102 PX402 P87C51RC
Product Description
Full Text Search
 

To Download 10-F006PPA020SB-M685B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-F006PPA020SB-M685B preliminary datasheet flowpim0+pfc 2nd 600v/20a clip in pcb mounting trench fieldstop igbt's for low saturation losses latest generation superjunction mosfet for pfc industrial drives embedded drives 10-F006PPA020SB-M685B t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 26 t c =80 c 36 t h =80 c 32 t c =80 c 48 maxi mum junction temperature t j max 150 c t j =t j m ax t p =10ms t j =t j max p tot 200 a features flowpim0+pfc 2nd target applications schematic dc forward current surge forward current t j =150c 200 types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode a w power dissipation per diode i 2 t 1 revi sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition pfc mosfet v ds 600 v t h =80c 20 t c =80 c 24 i d =9,3 a v dd =50v i d =9,3a v dd =50v mosf e t dv/dt ruggedness dv/dt 50 v/ns t h =80c 64 t c =80 c 97 gate -source peak voltage v gs 20 v dv/dt v ds = 0...400v , i sd i d tj=2 5c 15 v/ns t j m ax 150 c pfc diode t h =80c 22 t c =80 c 28 t h =80 c 35 t c =80 c 53 pfc shunt tj=25c tj=25c 1135 1,72 p tot i f i f v rrm i frm p tot t c =25c t c =25c 3 w 60h z single half-sine wave t j =t j max power dissipation maximum junction temperature dc forward current power dissipation per shunt t j =t j max t p limited by t j max t j =t j max 600 dr a in to source breakdown voltage dc drain current power dissipation reverse diode dv/dt c w a peak repetitive reverse voltage t j =25c 150 dc forward current repetitive peak forward current t j max a mj w aval a nche energy, repetitive avalanche energy, single pulse mj a e as a a maxi m um junction temperature i dpulse i d pulsed drain current p tot e ar avalanche current, repetitive i ar v a t j =t j max 55 159 9 , 3 300 2 revi sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter transistor t h =80c 20 t c =80 c 27 t h =80 c 41 t c =80 c 62 t sc t j 150c 6 s v cc v ge = 15v 360 v inverter diode t h =80c 26 t c =80 c 34 t h =80 c 40 t c =80 c 60 dc link capacitor thermal properties insulation properties v is t=2s dc vol tage 4000 v min 12,7 mm min 12,7 mm cti >200 w a v 600 c 175 t j max v ce i c v ge i frm p tot i cpulse t j max 60 v a 600 a v t j = t j m ax t j =t j max v ce 600v, t j t op m ax t p limited by t j max coll e ctor-emitter break down voltage dc collector current pulsed collector current maximum junction temperature peak repetitive reverse voltage power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area repetitive peak forward current power dissipation per diode w 175 c t j =t j max a i f v rrm t j =25c a t j =t j max t p limited by t j max dc f o rward current p tot gate-emitter peak voltage t c =25c max. d c voltage v max 500 v -40+ (tjmax - 25) c storage temperature t stg -40+125 c comp arative tracking index insulation voltage creepage distance t op operation temperature under switching condition clear ance 60 20 60 3 revi sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet param eter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,20 tj=125c 1,17 tj=25c 0,92 tj=125c 0,81 tj=25c 11 tj=125c 14 tj=25c 0,05 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,20 k/w tj=25c 70 tj=125c 140 tj=25c 2,4 3 3,6 tj=125c tj=25c 100 tj=125c tj=25c 5 tj=125c tj=25c 27 tj=125c 25 tj=25c 16 tj=125c 16 tj=25c 148 tj=125c 155 tj=25c 5 tj=125c 4 tj=25c 0,30 tj=125c 0,53 tj=25c 0,10 tj=125c 0,11 tj=25c 2,42 2,6 tj=125c 1,79 tj=25c 100 tj=125c tj=25c 9 tj=125c 18 tj=25c 29 tj=125c 46 tj=25c 0,14 tj=125c 0,57 tj=25c 0,02 tj=125c 0,08 di(rec)max tj=25c 1554 /dt tj=125c 1125 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,02 k/w k /w na 400 zero gate voltage drain current i dss 0 20c to 60c rgon=8 0 f=1mh z t hermal grease thickness 50um = 1 w/mk rgon=8 r ds(on) t f e on thermal resistance chip to heatsink per chip v f total gate charge fall time turn-off energy loss per pulse input capacitance q gs q gd q ge e off t c r thi t rr r r thjh c oss r g c iss e rec l q rr i rrm i rm reverse recovery time reverse recovered energy inductance internal heat resistance pfc diode forward voltage reverse leakage current pfc mosfet gate resistance gate t o source charge turn-on energy loss per pulse output capacitance gate to drain charge turn on delay time rise time turn off delay time rgoff=8 t r t d(off) t d(on) i gss gate to source leakage current static drain to source on resistance value condi t ions 100 characteristic values forward voltage thresh old voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 25 25 25 v v m ma rev erse current i r 600 15 10 0 400 10 21 21 0,85 a v tj=25c 20 gate threshold voltage 15 600 30 peak rate of fall of recovery current reverse recovery charge pfc shunt temperature coeficient r1 va l ue peak recovery current 21 1600 87 215 3800 ns a m nc c nh m ppm / k mws ns na v v (gs)th a/s mws k/w 25,8 480 15 0,00172 1,09 170 tj=25c pf 3 10 30 10 4 rev ision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet param eter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c ondit ions characteristic values tj=25c 5 5,6 6,5 tj=125c tj=25c 1,1 1,58 1,9 tj=125c 1,76 tj=25c 1,1 tj=125c tj=25c 300 tj=125c tj=25c 67 tj=125c 67 tj=25c 27 tj=125c 29 tj=25c 126 tj=125c 145 tj=25c 54 tj=125c 75 tj=25c 0,68 tj=125c 0,96 tj=25c 0,48 tj=125c 0,71 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,32 k/w tj=25c 1,25 1,64 1,95 tj=125c 1,66 tj=25c 10 tj=125c 13 tj=25c 204 tj=125c 257 tj=25c 1,13 tj=125c 2,01 di(rec)max tj=25c 31 /dt tj=125c 71 tj=25c 0,31 tj=125c 0,54 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,40 k/w a tj= 25c vincotech ntc reference b-value tol. 3% k b (25/100) tj=25c 4000 k tj=25c b-value b (25/50) tol. 3% none tj=25c 120 1100 v 30 % nf 100 22000 5 -5 3,5 210 15 0 t r t d(off) v ce =v ge q gate erec c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage c a/s f = 1mhz rgon=16 0 20 15 rgo f f=16 15 20 20 15 t u rn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current rever se transfer capacitance diode forward voltage gate charge c ies reverse recovery time reverse recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 600 25 0 480 20 20 0,00029 400 400 mw/k power dissipation p mw rated resistance r power dissipation constant deviation of r100 r/r r100=1486 c value c thermistor dc li n k capacitor rgon=16 32 mws tj= 2 5c tc=100c tc=100c tj=25c v ns a nc na v 71 mws ns pf a tj=25c 5 rev ision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 125 c v g e from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v out put inverter typical output characteristics 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) 0 4 8 12 16 20 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 25 50 75 100 125 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) 6 rev ision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v ce = 4 00 v v ge = 15 v v ge = 15 v r go n = 16 i c = 20 a r g of f = 16 figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v ce = 4 00 v v ge = 15 v v ge = 15 v r go n = 16 i c = 20 a o ut put inverter e on high t e off high t e on low t e off low t 0,0 0,2 0, 4 0 ,6 0,8 1,0 1,2 1,4 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,5 1,0 1,5 2,0 0 20 40 60 80 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0 ,3 0,4 0,5 0,6 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0,15 0,30 0,45 0,60 0,75 0 20 40 60 80 r g ( w ) e (mws) 7 rev ision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v c e = 400 v v ce = 4 00 v v ge = 15 v v ge = 15 v r go n = 16 i c = 20 a r g of f = 16 figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v ou tput inverter t doff t f t don t r 0,00 0,01 0, 10 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t rr t j = t jmax -25c t rr t j = 25c 0 0,1 0,2 0 ,3 0,4 0 20 40 60 80 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0, 10 1,00 0 20 40 60 80 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,00 0,05 0, 10 0,15 0,20 0,25 0,30 0 5 10 15 20 25 30 i c (a) t rr ( m s) 8 rev ision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v figur e 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v ou tput inverter t j = t jmax - 25c t j = 25c i rrm 0 10 20 30 40 0 1 6 32 48 64 80 r gon ( w ww w ) i rrm (a) i rrm t j = t jmax -25c q rr t j = 25c q rr 0,0 0,5 1, 0 1 ,5 2,0 2,5 0 20 40 60 80 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 3 6 9 12 15 0 5 10 15 2 0 25 30 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0,5 1,0 1 ,5 2,0 2,5 0 5 10 15 20 25 30 i c (a) q rr (mc) 9 rev ision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v figur e 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd tr ansient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 2,32 k /w r thjh = 1,88 k /w r thjh = 2,40 k /w r thjh = 1,94 k /w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 4,4e+00 0,06 3,6e+00 0,07 4,6e+00 0,06 3,7e+00 0,30 3,8e-01 0,24 3,1e-01 0,27 4,8e-01 0,22 3,9e-01 1,26 8,1e-02 1,02 6,6e-02 1,13 8,5e-02 0,92 6,9e-02 0,34 1,2e-02 0,27 9,6e-03 0,52 2,0e-02 0,42 1,6e-02 0,14 1,4e-03 0,12 1,1e-03 0,20 2,8e-03 0,16 2,3e-03 0,21 1,3e-04 0,17 1,0e-04 0,21 3,3e-04 0,17 2,7e-04 phase change interface thermal grease thermal grease output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 1000 2 0 00 3000 4000 5000 6000 0 20 40 60 80 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt 0 200 400 600 800 1000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 10 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v g e = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 c t j = 175 c o utput inverter 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 t h ( o c) i c (a) 0 15 30 45 60 75 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) 11 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate v oltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = s ingle pulse i c = 20 a t h = 8 0 oc v ge = 15 v t j = t jmax oc figure 2 7 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 6 00 v v c e 6 00 v t j 17 5 oc t j = 175 oc o utput inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 20 0 20 40 60 80 100 120 140 160 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 50 100 150 200 250 300 350 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) 12 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jm ax -25 oc u ccm i nus =u ccplus switching mode : 3 level switching output inverter 0 10 20 30 40 50 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip 13 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 1 pfc mosfet figure 2 pfc mosfet typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 125 c v gs from 0 v t o 20 v in steps of 2 v v gs from 0 v t o 20 v in steps of 2 v figure 3 pfc mos fet figure 4 pfc fwd typical transfer characteristics typical diode forward current as a function of forward voltage i d = f(v gs ) i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ds = 10 v pfc 0 25 50 75 100 125 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 5 10 15 20 25 0 1 2 3 4 5 6 v gs (v) i d (a) t j = 25c t j = t jmax -25c 14 rev i sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ds = 400 v v ds = 4 00 v v gs = 10 v v gs = 1 0 v r gon = 8 i d = 21 a r gof f = 8 figure 7 p fc mos fet figure 8 pfc mosfet typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ds = 400 v v ds = 4 00 v v gs = 10 v v gs = 1 0 v r gon = 8 i d = 21 a r gof f = 8 pfc t j = t jmax -25c e rec t j = 25c e rec 0,00 0,02 0, 04 0,06 0,08 0,10 0 5 10 15 20 25 30 i c (a) e (mws) e rec t j = t jmax - 25c e rec t j = 25c 0,00 0,02 0, 04 0,06 0,08 0,10 0 10 20 30 40 r g ( w ww w ) e (mws) e off e on e on e off 0 0,2 0,4 0 ,6 0,8 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e off e on e on t j =25c e off 0,0 0,2 0,4 0,6 0,8 1,0 0 10 20 30 40 r g ( w ww w ) e (mws) 15 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 9 pfc mosfet figure 10 pfc mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f (r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v d s = 400 v v ds = 4 00 v v gs = 10 v v gs = 1 0 v r gon = 8 i c = 21 a r gof f = 8 figure 1 1 pfc fwd figur e 12 pfc fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 10 v i f = 21 a r g on = 8 v gs = 10 v pfc t doff t don t r 0,00 0,01 0, 10 1,00 0 5 10 15 20 25 30 i d (a) t ( m s) t doff t don t r 0,00 0,01 0, 10 1,00 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr t j = t jmax -25c t rr t j = 25c 0,00 0,02 0, 04 0,06 0,08 0,10 0 10 20 30 40 r gon ( w ww w ) t rr ( m s) t rr t rr 0 0,01 0, 02 0,03 0,04 0,05 0,06 0 5 10 15 20 25 30 i c (a) t rr ( m s) 16 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 13 pfc fwd figure 14 pfc fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 400 v v ge = 10 v i f = 21 a r gon = 8 v gs = 10 v figure 1 5 pfc fwd figur e 16 pfc fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 10 v i f = 21 a r g on = 8 v gs = 10 v pfc t j = t jmax -25c i rrm t j = 25c i rrm 0 5 10 15 20 25 3 0 0 10 20 30 40 r go n ( w ww w ) irr m (a) q rr t j = t jmax - 25c q rr t j = 25c 0,0 0,2 0,4 0 ,6 0,8 0 8 16 24 32 40 r gon ( w ) q rr ( m c) t j = t jmax - 25c i rrm t j = 25c i rrm 0 4 8 12 16 20 0 5 10 1 5 20 25 30 i c (a) irr m (a) q rr t j = t jmax - 25c q rr t j = 25c 0 0,2 0, 4 0 ,6 0,8 0 5 10 15 20 25 30 i c (a) q rr ( m c) 17 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 17 pfc fwd figure 18 pfc fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 10 v i f = 21 a r gon = 8,01 v gs = 10 v figure 19 pfc igb t/mosfet figure 20 pfc fwd igbt/mosfet transient thermal impedance fwd transient therm al impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,09 k /w r thjh = 0,88 k /w r thjh = 2,02 k /w r thjh = 1,63 k /w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,06 3,95e+00 0,05 3,20e+00 0,06 6,73e+00 0,05 5,46e+00 0,28 4,91e-01 0,23 3,98e-01 0,32 5,93e-01 0,26 4,80e-01 0,53 1,37e-01 0,43 1,11e-01 1,04 1,16e-01 0,85 9,40e-02 0,13 2,28e-02 0,11 1,85e-02 0,33 2,53e-02 0,26 2,05e-02 0,05 3,27e-03 0,04 2,66e-03 0,14 5,39e-03 0,12 4,37e-03 0,03 5,12e-04 0,03 4,15e-04 0,12 8,83e-04 0,10 7,16e-04 phase change interface phase change interface thermal grease thermal grease pfc t j = 25c t j = t jmax - 25c 0 500 100 0 1500 2000 2500 3000 0 8 16 24 32 40 r g on ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax -25c t j = 25c 0 500 100 0 1500 2000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m s) di 0 /dt di rec /d t 18 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 21 pfc igbt/mosfet figure 22 pfc igbt/mosfet power dissipation as a collect or/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 15 0 o c t j = 150 oc v g s = 10 v figure 23 pfc fwd fi gure 24 pfc fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 o c t j = 150 oc p fc 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) 19 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 2 5 pfc mos fet figure 26 pfc mosfet safe operating area as a function gate v oltage vs gate charge of drain-source voltage i d = f(v ds ) v gs = f(qg) at at d = s ingle pulse i d = 21 a t h = 8 0 oc v gs = 10 v t j = t jm ax oc figure 2 9 igbt re v erse bias safe operating area i c = f(v ce ) at t j = t jm ax -25 oc u ccm i nus =u ccplus switching mode : 3phase spwm pfc v ds (v) i d (a) 10 3 10 0 10 1 10 2 10 3 10us 100us 1ms 10ms 100ms dc 10 2 10 1 0 2 4 6 8 10 0 25 50 75 100 125 150 175 200 qg (nc) v gs (v) 120v 480v 0 10 20 30 40 50 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip 20 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode tr ansient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 s d = t p / t r thjh = 2,20 k /w figure 3 rectif ier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 o c t j = 150 oc i nput rectifier bridge 0 20 40 60 80 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) 21 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8 0 00 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100/25 1 1 25 )( tt b ertr 22 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet t j 125 c r gon 16  r goff 16  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v g e (0%) = -15 v v ge (100%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 21 a i c (1 00%) = 21 a t dof f = 0,15 s t do n = 0,07 s t eo ff = 0,40 s t eo n = 0,24 s figur e 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 21 a i c (1 00%) = 21 a t f = 0, 08 s t r = 0 ,03 s sw itching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 10 0 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % t doff t eoff v ce i c v ge i c 10% v ge10% t don v ce 3% -25 0 25 50 75 10 0 125 150 175 2,9 3 3,1 3,2 3,3 3,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c90% -25 0 25 50 75 10 0 125 150 175 3 3,1 3,2 3,3 3,4 time(us) % t r v ce i c 23 rev i sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 8,37 k w p on (100%) = 8,37 k w e off (100%) = 0,71 m j e on (100%) = 0,96 m j t eoff = 0,40 s t eo n = 0,24 s figur e 7 output inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d ( 100%) = 400 v v ge on = 15 v i d (1 00%) = 21 a v c (1 00%) = 400 v i rr m (100%) = -13 a i c ( 100%) = 21 a t rr = 0 ,26 s q g = 1 79,9 3 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 15 0 2,9 3 3,1 3,2 3,3 3,4 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -5 0 0 50 100 150 2,8 3 3,2 3,4 3,6 time(us) % i d v d fitted 24 rev i sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 21 a p re c (100%) = 8,37 k w q rr (100%) = 2,01 c e re c (100%) = 0,54 m j t qrr = 0,52 s t er ec = 0,52 s sw itching definitions output inverter t qrr -100 -50 0 50 1 0 0 150 2,8 3 3,2 3,4 3,6 3,8 4 % i d q rr time(us) -25 0 25 50 75 100 125 3 3,2 3,4 3,6 3,8 time(us) % p rec e rec t erec 2 5 r e v i sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet t j 125 c r gon 8  r goff 8  figure 1 p fc mos fet figure 2 pfc mosfet turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 0 v v ge ( 0 %) = 0 v v ge (1 00%) = 10 v v ge ( 100%) = 10 v v c (1 00%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 21 a i c (1 00%) = 21 a t dof f = 0,16 s t do n = 0,03 s t eo ff = 0,19 s t eo n = 0,08 s figur e 3 pfc mos fet figure 4 pfc mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 21 a i c (1 00%) = 21 a t f = 0, 004 0 s t r = 0,016 0 s = = = switching definitions pfc general conditions i c10% v ge10% t don v ce3% -50 0 50 100 15 0 200 2,96 2,98 3 3,02 3,04 3,06 3,08 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -25 0 25 50 75 10 0 125 -0,05 0 0,05 0,1 0,15 0,2 0,25 time (us) % t doff t eoff v ce i c v ge fitted i c 10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 0,12 0,14 0,16 0,18 0,2 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 15 0 200 2,98 3 3,02 3,04 3,06 3,08 time(us) % t r v ce i c 26 rev i sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 8,37 k w p on (100%) = 8,365 2 kw e off (100%) = 0,11 m j e on (100%) = 0,53 m j t eoff = 0,19 s t eo n = 0,084 3 s figure 7 pfc mos fet figure 8 pfc fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = 0 v v d (10 0%) = 400 v v ge on = 10 v i d (1 00%) = 21 a v c (1 00%) = 400 v i rr m (100%) = -18 a i c ( 100%) = 21 a t rr = 0 ,05 s q g = 1 08,0 6 nc switching definitions pfc i c 1% u ge 90% -25 0 25 50 75 1 0 0 125 -0,1 0 0,1 0,2 0,3 time (us) % p off e off t eoff u ce 3% u ge10% -50 0 50 100 15 0 200 2,95 3 3,05 3,1 3,15 time(us) % p on e on t eon -2 0 2 4 6 8 10 12 -20 0 20 40 60 80 100 120 qg (nc) uge (v) i rrm10% i rrm 90% i rrm100% t rr -150 -100 -5 0 0 50 100 150 2,98 3,01 3,04 3,07 3,1 3,13 time(us) % i d u d fitted 27 rev i sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet figure 9 pfc fwd figure 10 pfc fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 21 a p re c (100%) = 8,37 k w q rr (100%) = 0,57 c e re c (100%) = 0,08 m j t qint = 0,09 s t er ec = 0,09 s sw itching definitions pfc t qint -100 -50 0 50 1 0 0 150 2,98 3,03 3,08 3,13 3,18 time(us) % i d q rr -25 0 25 50 75 100 125 2,98 3,03 3,08 3,13 3,18 time(us) % p rec e rec t erec 2 8 r e v i sion: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 17mm housing 10-F006PPA020SB-M685B m685b m685b outline pinout ordering code & marking ordering code and marking - outline - pinout 29 re vision: 1 copyright by vincotech
10-F006PPA020SB-M685B preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target product status datasheet status definition this datasheet contains the design specifications for product development. specifications may change in any manner without notice. the data contained is exclusively intended for technically trained staff. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. 30 rev ision: 1 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-F006PPA020SB-M685B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X